lim(x_{n+1}-x_n)=0 implica x_n convergent

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
mychrom
Euclid
Posts: 16
Joined: Mon Oct 08, 2007 8:52 pm

lim(x_{n+1}-x_n)=0 implica x_n convergent

Post by mychrom »

In legatura cu problema postata de Andrei, am gasit problema asta:

Fie \( f:[a,b] \to [a,b] \) o functie continua. Fie \( x_0 \in [a,b] \) si \( x_n=f(x_{n-1}) \), pentru \( n > 0 \). Aratati ca sirul \( x_n \) converge daca si numai daca sirul \( x_{n+1}-x_n \) converge la 0.
Post Reply

Return to “Analiza matematica”