Interesant (geometrie) ...

Post Reply
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Interesant (geometrie) ...

Post by Virgil Nicula »

Fie un triunghi \( A \)-dreptunghic \( ABC \) cu incentrul \( I \) . Sa se arate ca

\( IA^2=(a-b)(a-c) \) , \( IB^2=a(a-b) \) si \( IC^2=a(a-c) \) .
Adriana Nistor
Pitagora
Posts: 82
Joined: Thu Aug 07, 2008 10:07 pm
Location: Drobeta Turnu Severin, Mehedinti

Post by Adriana Nistor »

\( \frac{BD}{CD}=\frac{c}{b}\Rightarrow\frac{BD}{a}=\frac{c}{b+c}\Rightarrow BD=\frac{ac}{b+c} \);\( \frac{AI}{ID}=\frac{AB}{BD}\Rightarrow\frac{AI}{AD}=\frac{b+c}{a+b+c} \)\( \Rightarrow{AI}=\frac{bc(b+c-a)}{a+b+c} \).De aici,tinand cont ca \( a^2=b^2+c^2 \) se arata prin calcul ca \( IA^2=(a-b)(a-c) \)
Analog \( BI^2=\frac{ac(a+c-b)}{a+b+c)};IC^2=\frac{ab(a+b-c)}{a+b+c} \)Egalitatea dintre aceste forme si cele ce trebuiesc demonstrate poate fi verificata prin calcul direct.
Post Reply

Return to “Clasa a 9-a”