Numerele reale \( a, b, c, d, e \) au proprietatea ca
\( |a-b| = 2|b-c| = 3|c-d| = 4|d-e| = 5|e-a| \)
Sa se arate ca nuemerele \( a, b, c, d, e \) sunt egale.
Subiectul 2, OJM 2009
Moderators: Bogdan Posa, Laurian Filip
Subiectul 2, OJM 2009
Ce sa-i faci ....
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
Avem \( k(\pm1\pm\frac{1}{2}\pm\frac{1}{3}\pm\frac{1}{4}\pm\frac{1}{5})=a-b+b-c+c-d+d-e+e-a=0 \).
In cazul in care \( k=0 \), atunci \( a=b=c=d=e \).
Daca \( k\neq 0 \), atunci \( \pm1\pm\frac{1}{2}\pm\frac{1}{3}\pm\frac{1}{4}\pm\frac{1}{5}=0 \), deci \( \pm1\pm\frac{1}{2}\pm\frac{1}{3}\pm\frac{1}{4}=\mp\frac{1}{5} \) sau \( \frac{\pm12\pm6\pm4\pm3}{12}=\mp\frac{1}{5} \).
Notand \( \pm12\pm6\pm4\pm3 \) cu \( m \), pentru orice alegere a semnelor observam ca \( m \) este intreg. Dar \( m=\mp\frac{12}{5} \), care nu este intreg, ceea ce duce la contradictie.
Atunci \( k=0 \), deci \( a=b=c=d=e \).
In cazul in care \( k=0 \), atunci \( a=b=c=d=e \).
Daca \( k\neq 0 \), atunci \( \pm1\pm\frac{1}{2}\pm\frac{1}{3}\pm\frac{1}{4}\pm\frac{1}{5}=0 \), deci \( \pm1\pm\frac{1}{2}\pm\frac{1}{3}\pm\frac{1}{4}=\mp\frac{1}{5} \) sau \( \frac{\pm12\pm6\pm4\pm3}{12}=\mp\frac{1}{5} \).
Notand \( \pm12\pm6\pm4\pm3 \) cu \( m \), pentru orice alegere a semnelor observam ca \( m \) este intreg. Dar \( m=\mp\frac{12}{5} \), care nu este intreg, ceea ce duce la contradictie.
Atunci \( k=0 \), deci \( a=b=c=d=e \).