Sa se determine functiile strict crescatoare \( f:\mathbb{R}\rightarrow\mathbb{R} \) cu proprietatea ca \( f(xf(y))=f(x)f(y) \) oricare ar fi \( x,y\in\mathbb{R} \)
GM
Ecuatie functionala 3
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Intai \( f \) e injectiva. Deoarece \( f\left(xf\left(y\right)\right)=f\left(yf\left(x\right)\right)=f\left(x\right)\cdot f\left(y\right)\Longrightarrow xf\left(y\right)=yf\left(x\right)\Longrightarrow\frac{f\left(x\right)}{x}=\frac{f\left(y\right)}{y}=c \), cu \( c \) constant. De aici functiie cautate sunt de forma \( f(x)=cx \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)