Daca \( a,\ b,\ c>0 \) atunci \( \frac{a^{3}}{b^{2}+c^{2}}+\frac{b^{3}}{c^{2}+a^{2}}+\frac{c^{3}}{a^{2}+b^{2}}\ge\frac{a+b+c}{2} \)
Va propun o imbunatatire a inegalitatii de mai sus.
Fie \( a, \ b,\ c >0 \). Sa se arate ca \( \frac{a^{3}}{b^{2}+c^{2}}+\frac{b^{3}}{c^{2}+a^{2}}+\frac{c^{3}}{a^{2}+b^{2}}\ge\frac{3}{2}\sqrt{\frac{a^{3}+b^{3}+c^{3}}{a+b+c}} \) .
Claudiu Mindrila
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Claudiu Mindrila wrote:In Math. Reflections apare urmatoarea problema:
Daca \( a,\ b,\ c>0 \) atunci \( \frac{a^{3}}{b^{2}+c^{2}}+\frac{b^{3}}{c^{2}+a^{2}}+\frac{c^{3}}{a^{2}+b^{2}}\ge\frac{a+b+c}{2} \)
Va propun o imbunatatire a inegalitatii de mai sus.
Fie \( a, \ b,\ c >0 \). Sa se arate ca \( \frac{a^{3}}{b^{2}+c^{2}}+\frac{b^{3}}{c^{2}+a^{2}}+\frac{c^{3}}{a^{2}+b^{2}}\ge\frac{3}{2}\sqrt{\frac{a^{3}+b^{3}+c^{3}}{a+b+c}} \) .