Fie \( f:[0,1] \to R \) o functie indefinit derivabila pe [0,1].Sa se arate ca \( \exists {\rm c} \in {\rm [0,1]} \) astfel incat \( \begin{array}{l}
\int\limits_{\rm 0}^{\rm 1} {f(x)dx = f(0) + \frac{1}{2}f^{(1)} (0) + \frac{1}{6}} f^{(2)} (0) + ... + \frac{1}{{n!}}f^{(n - 1)} (0) + \frac{1}{{(n + 1)!}}f^{(n)} (c) \\
\end{array} \),pentru orice \( n \in N \).
O generalizare a unei probleme de medie(own)
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
-
Theodor Munteanu
- Pitagora
- Posts: 98
- Joined: Tue May 06, 2008 5:46 pm
- Location: Sighetu Marmatiei
O generalizare a unei probleme de medie(own)
La inceput a fost numarul. El este stapanul universului.
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
-
Laurentiu Tucaa
- Thales
- Posts: 145
- Joined: Sun Mar 22, 2009 6:22 pm
- Location: Pitesti
Folosim dezvoltarea in serie Taylor careia ii aplicam restul lui Lagrange(formula lui Mac Laurin) pt functia \( F:[0,1]\rightarrow\mathbb{R},F(x)=\int_0^x f(t)dt \).Avem ca exista \( c_x\in(0,x) \) a.i.\( F(x)=F(0)+\frac{F^{(1)}(0)}{1!}+\frac{F^{(2)}(0)}{2!}+...+\frac{F^{(n+1)}(0)}{(n+1)!}+\frac{F^{(n+2)}(c_x)}{(n+2)!} \).Aplicand aceasta pt \( x=1 \) si tinand cont ca \( F^{(1)}=f \) avem concluzia.
-
Theodor Munteanu
- Pitagora
- Posts: 98
- Joined: Tue May 06, 2008 5:46 pm
- Location: Sighetu Marmatiei