Sa se gaseasca \( \min_{a,b \in R} \max (a^2+b,b^2+a). \)
Bibliografie:
1. T. Andreescu, R. Gelca - Putnam and Beyond.
Inegalitate cu min max
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- Alin Galatan
- Site Admin
- Posts: 247
- Joined: Tue Sep 25, 2007 9:24 pm
- Location: Bucuresti/Timisoara/Moldova Noua
-
pohoatza
Chiar ca beyond Putnam e ca dificultate. Fie \( t=\max(a^{2}+b,b^{2}+a) \). Din ce am inteles, se cere \( \min(t). \)
Din inegalitatea mediilor si adunand \( \frac{1}{2} \), obtinem
\( 2t + \frac{1}{2} \geq \left(a+\frac{1}{2}\right)^{2}+\left(b+\frac{1}{2}\right)^{2} \geq 0 \).
Astfel, \( t \geq -\frac{1}{4} \). Deci \( \min(t) = -\frac{1}{4}. \)
Din inegalitatea mediilor si adunand \( \frac{1}{2} \), obtinem
\( 2t + \frac{1}{2} \geq \left(a+\frac{1}{2}\right)^{2}+\left(b+\frac{1}{2}\right)^{2} \geq 0 \).
Astfel, \( t \geq -\frac{1}{4} \). Deci \( \min(t) = -\frac{1}{4}. \)
- Alin Galatan
- Site Admin
- Posts: 247
- Joined: Tue Sep 25, 2007 9:24 pm
- Location: Bucuresti/Timisoara/Moldova Noua