Inegalitate simpluta, 2

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate simpluta, 2

Post by Claudiu Mindrila »

Fie \( a, \ b, \ c>0 \) cu \( a^2+b^2+c^2=1 \). Sa se arate ca \( abc\left(a+b+c\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right) \le 1 \).

Cristinel Mortici
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Folosind succesiv inegalitatea \( x^2+y^2+z^2\ge xy+yz+zx \) obtinem :

\( a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\ge abc(a+b+c) \)

Asadar, \( LHS\le a^4+b^4+c^4+2(a^2b^2+b^2c^2+c^2a^2)=(a^2+b^2+c^2)^2=1 \) .
Post Reply

Return to “Clasa a VIII-a”