Ecuatie cu coeficienti complecsi

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Ecuatie cu coeficienti complecsi

Post by alex2008 »

Sa se arate ca daca radacinile ecuatiei cu coeficienti complecsi \( az^2+bz+c=0 \) au acelasi modul, atunci \( |a|\cdot \overline{b}\cdot c=\overline{a}\cdot b\cdot |c| \).
. A snake that slithers on the ground can only dream of flying through the air.
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

\( |z_1|=|z_2|\ \Longleftrightarrow\ z_1\overline{z_1}=z_2\overline{z_2}\ \Longleftrightarrow\ z_1\overline{z_1}+\overline{z_1}z_2=z_2\overline{z_2}+\overline{z_1}{z_2}\ \Longleftrightarrow\ \overline{z_1}(z_1+z_2)=z_2(\overline{z_1+z_2}) \\\ \\\
\\\ \\\
\Longleftrightarrow\ z_1\overline{z_1}(z_1+z_2)=z_1z_2(\overline{z_1+z_2})\ \Longleftrightarrow\ |z_1|^2(z_1+z_2)=z_1z_2(\overline{z_1+z_2})\\\ \\\
\\\ \\\
\Longleftrightarrow^{\normal |z_1|=|z_2|}\ |z_1z_2|(z_1+z_2)=z_1z_2(\overline{z_1+z_2})\ \Longleftrightarrow\ \left|\frac ca\right|\ \cdot\ \left\(-\frac ba\right\)=\frac ca\ \cdot\ \left\(-\frac{\overline b}{\overline a}\right\)\ \Longleftrightarrow\ \overline{\underline{\left\|\ \overline ab|c|=|a|\overline bc\ \right\|}} \)
Last edited by Mateescu Constantin on Thu Jan 28, 2010 6:44 pm, edited 3 times in total.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Folosind relatiile lui Viete, concluzia este echivalenta cu \( \frac{\overline{b}}{\overline{a}}\cdot\frac{c}{a}\cdot\frac{a}{b}=|\frac{c}{a}| \) sau \( |z_1z_2|=\overline{z_1+z_2}\cdot (z_1z_2)\frac{1}{z_1+z_2} \) sau \( (z_1+z_2)|z_1|^2=|z_1|^2z_2+|z_2|^2z_1 \) care este adevarata avand in vedere ipoteza.
Post Reply

Return to “Clasa a X-a”