Exercitiu cu numere complexe

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Exercitiu cu numere complexe

Post by alex2008 »

Fie \( z_1,\ z_2 \) si \( z_3\in \mathbb{C} \) astfel incat \( |z_1|=|z_2|=|z_3| \) si \( |z_1+z_2|+|z_1+z_3|=|z_1-z_2|+|z_1-z_3| \). Sa se arate ca \( z_2+z_3=0 \).
. A snake that slithers on the ground can only dream of flying through the air.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Consider imaginile geometrice \( A(z_1),\ B(z_2),\ C(z_3) \) ale celor trei puncte,M si N mijloacele laturilor AB si AC , triunghiul ABC are centrul cercului circumscris in origine \( O(0) \) iar relatia din enunt devine \( 2OM+AB=2ON+AC \) de unde rezulta \( \cos B+\cos C=\sin B+\sin C \) deci \( \tan\frac{B+C}{2}=1 \), \( B+C=\frac{\pi}{2} \).
Last edited by Marius Mainea on Fri Jan 22, 2010 11:24 pm, edited 1 time in total.
Adriana Nistor
Pitagora
Posts: 82
Joined: Thu Aug 07, 2008 10:07 pm
Location: Drobeta Turnu Severin, Mehedinti

Post by Adriana Nistor »

Ce s-a notat cu \( M \) si \( N \)?
Post Reply

Return to “Clasa a X-a”