Numar de patru cifre.
Moderators: Bogdan Posa, Laurian Filip
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Numar de patru cifre.
Determinati \( \overline{abcd} \) , \( a,c\neq 0 \) pentru care \( \frac{\sqrt{\overline{abcd}}}{\sqrt{\overline{ab}}+\sqrt{\overline{cd}}}\in\mathbb{Q} \).
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
\( \sqrt{\overline{abcd}}\cdot\sqrt{\overline{ab}}\in\mathbb{Q} \) si \( \sqrt{\overline{abcd}}\cdot\sqrt{\overline{ab}}\in (\overline{ab0},\overline{ab5}) \)
Convine numai cazul \( \overline{abcd}\cdot\overline{ab}=\overline{ab4}^2 \) de unde \( \overline{abcd}=\overline{1681} \)
Mi se pare o demonstratie mai usoara decat cea de mai jos.
Convine numai cazul \( \overline{abcd}\cdot\overline{ab}=\overline{ab4}^2 \) de unde \( \overline{abcd}=\overline{1681} \)
Mi se pare o demonstratie mai usoara decat cea de mai jos.
Last edited by Marius Mainea on Wed Dec 30, 2009 10:49 pm, edited 1 time in total.
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)