Fie \( \triangle{ABC} \) iar \( H \) ortocentrul sau. Sa se arate ca
\( \tan A\cdot\vec{HA}+\tan B\cdot\vec{HB}+\tan C\cdot\vec{HC}=\vec{0} \)
Suma vectoriala nula
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Suma vectoriala nula
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Re: Suma = \vec{0}
Relatia se reduce laClaudiu Mindrila wrote:
\( \tan A\cdot\vec{HA}+\tan B\cdot\vec{HB}+\tan C\cdot\vec{HC}=\vec{0} \)
\( \left{\begin{array}{cc}\tan B\cdot\vec{A^{\prime}B}+\tan C\cdot\vec{A^{\prime}C}=\vec{0}\\\tan A\cdot\vec{HA}+(\tan B+\tan C)\vec{HA^{\prime}}=\vec{0}\end{array} \)