Fie \( a,b\in\mathbb{R} \) numere reale date. Spunem ca functia \( f:[a,b)\rightarrow[a,b) \) are proprietatea \( \mathcal{P} \), daca \( f(x)\in\{x-1,x+1\} \) pentru orice \( x\in[a,b). \)
a) Demonstrati ca exista o functie injectiva cu proprietatea \( \mathcal{P} \) daca si numai daca \( b-a \) esta numar natural par.
b) Daca f, g au proprietatea \( \mathcal{P} \) si \( g\circ f \) este bijectiva, atunci \( f=g \).
Shortlist ONM 2008, problema 2
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
a)
\( "\Longrightarrow" \) Deoarece \( f\left(b-1\right)\in\left{b,\ b-2\right},\ f\left(b-1\right)<b\Longrightarrow f(b-1)=b-2 \) si inductiv \(
f\left(b-x\right)=\begin{cases}
b-x-1, & x\equiv1\left(mod\ 2\right)\\
b-x+1, & x\equiv0\left(mod\ 2\right)\end{cases} \)
Analog \( f\left(a\right)\in\left\{ a-1,\ a+1\right\} ,\ f\left(a\right)\ge a\Longrightarrow f\left(a\right)=a+1 \) si inductiv \( f\left(a+x\right)=\begin{cases}
a+x-1, & x\equiv1\left(mod\ 2\right)\\
a+x+1, & x\equiv0\left(mod\ 2\right)\end{cases} \)
Fie \( k=b-a \), si presupunem \( k \) impar. Atunci \( a=b-k\Longrightarrow f\left(a\right)=f\left(b-k\right)\Longrightarrow a+1=b-k-1=a-1 \) absurd.
\( "\Longleftarrow" \)
Consideram functia \( f\left(b-x\right)=\begin{cases}
b-x-1, & x\equiv1\left(mod\ 2\right)\\
b-x+1, & x\equiv0\left(mod\ 2\right)\end{cases} \) si \(
f\left(a+x\right)=\begin{cases}
a+x-1, & x\equiv1\left(mod\ 2\right)\\
a+x+1, & x\equiv0\left(mod\ 2\right)\end{cases} \)
Fie \( \alpha,\ \beta\in\left[a,\ b\right) \) a. i. \( f\left(\alpha\right)=f\left(\beta\right) \) si presupunem ca \( \alpha\neq b \), unde \( \alpha=a+k\left(k\in\mathbb{N},\ k<b-a\right),\ \beta=b-l\left(l\in\mathbb{N}^{*},\ l\le b-a\right) \).
Analizam doua situatii:
I. \( k,\ l \) au aceeasi paritate \( \Longrightarrow a+k+1=b+l+1\Longrightarrow a=b-l-k\Longrightarrow\alpha=\beta \)
II. \( k,\ l \) au paritati diferite \( \Longrightarrow a+k+1=b-l-1\Longrightarrow k+l=b-a-2\Longrightarrow k+l\equiv0\left(mod\ 2\right) \)
Deoarece in ambele cazuri am ajuns la contradictii, functia de mai sus are proprietatea \( \mathcal{P} \) si e injectiva.
\( "\Longrightarrow" \) Deoarece \( f\left(b-1\right)\in\left{b,\ b-2\right},\ f\left(b-1\right)<b\Longrightarrow f(b-1)=b-2 \) si inductiv \(
f\left(b-x\right)=\begin{cases}
b-x-1, & x\equiv1\left(mod\ 2\right)\\
b-x+1, & x\equiv0\left(mod\ 2\right)\end{cases} \)
Analog \( f\left(a\right)\in\left\{ a-1,\ a+1\right\} ,\ f\left(a\right)\ge a\Longrightarrow f\left(a\right)=a+1 \) si inductiv \( f\left(a+x\right)=\begin{cases}
a+x-1, & x\equiv1\left(mod\ 2\right)\\
a+x+1, & x\equiv0\left(mod\ 2\right)\end{cases} \)
Fie \( k=b-a \), si presupunem \( k \) impar. Atunci \( a=b-k\Longrightarrow f\left(a\right)=f\left(b-k\right)\Longrightarrow a+1=b-k-1=a-1 \) absurd.
\( "\Longleftarrow" \)
Consideram functia \( f\left(b-x\right)=\begin{cases}
b-x-1, & x\equiv1\left(mod\ 2\right)\\
b-x+1, & x\equiv0\left(mod\ 2\right)\end{cases} \) si \(
f\left(a+x\right)=\begin{cases}
a+x-1, & x\equiv1\left(mod\ 2\right)\\
a+x+1, & x\equiv0\left(mod\ 2\right)\end{cases} \)
Fie \( \alpha,\ \beta\in\left[a,\ b\right) \) a. i. \( f\left(\alpha\right)=f\left(\beta\right) \) si presupunem ca \( \alpha\neq b \), unde \( \alpha=a+k\left(k\in\mathbb{N},\ k<b-a\right),\ \beta=b-l\left(l\in\mathbb{N}^{*},\ l\le b-a\right) \).
Analizam doua situatii:
I. \( k,\ l \) au aceeasi paritate \( \Longrightarrow a+k+1=b+l+1\Longrightarrow a=b-l-k\Longrightarrow\alpha=\beta \)
II. \( k,\ l \) au paritati diferite \( \Longrightarrow a+k+1=b-l-1\Longrightarrow k+l=b-a-2\Longrightarrow k+l\equiv0\left(mod\ 2\right) \)
Deoarece in ambele cazuri am ajuns la contradictii, functia de mai sus are proprietatea \( \mathcal{P} \) si e injectiva.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste