Unicitatea unei perechi

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Unicitatea unei perechi

Post by Claudiu Mindrila »

In planul cercului \( C\left(O,\ R\right) \) se considera un punct \( P \) a.i. \( 0<OP\le2R \). Aratati ca exista o unica pereche de puncte \( \left(P_{1},P_{2}\right) \) cu \( P_{1},\ P_{2}\in C\left(O,\ R\right) \) a. i. \( \vec{OP}=\vec{OP_{1}}+\vec{OP_{2}}. \)

Dan Stefan Marinescu, Viorel Cornea
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

O astfel de pereche are proprietatea ca \( OP_1PP_2 \) este romb de unde \( \cos\angle{POP_1}=\frac{OP}{2R} \) si de aici unicitatea.
Post Reply

Return to “Clasa a IX-a”