Determinati \( a,b, c>0 \) stiind ca:
\( b^2=a(a+b-c),\ a^2=c(c+a-b),\ c^2=b(b+c-a). \)
Concursul Matefbc editia a 4-a problema 5
Moderators: Bogdan Posa, Laurian Filip
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
-
moldovan ana
- Pitagora
- Posts: 54
- Joined: Wed Sep 23, 2009 4:10 pm
Se inmultesc toate 3 si se foloseste inegalitatea \( abc\geq (a+b-c)(b+c-a)(c+a-b) \) cu egalitate daca si numai daca \( a=b=c \) care este solutia.
Inegalitatea mentionata mai sus rezulta din urmatoarele inegalitati inmultite :
\( a^2 - (b-c)^2 = (a+b-c)(a+c-b) \leq a^2 \)
\( b^2 - (c-a)^2 = (b+c-a)(b+a-c) \leq b^2 \)
\( c^2 - (a-b)^2 = (c+a-b)(c+b-a) \leq c^2 \)
si apoi scoatem radicalul.
Inegalitatea mentionata mai sus rezulta din urmatoarele inegalitati inmultite :
\( a^2 - (b-c)^2 = (a+b-c)(a+c-b) \leq a^2 \)
\( b^2 - (c-a)^2 = (b+c-a)(b+a-c) \leq b^2 \)
\( c^2 - (a-b)^2 = (c+a-b)(c+b-a) \leq c^2 \)
si apoi scoatem radicalul.