Concursul Matefbc editia a 3-a problema 1

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Concursul Matefbc editia a 3-a problema 1

Post by Andi Brojbeanu »

Se construieste sirul:
\( A_1=\{0\}; A_2=\{2;4\}; A_3=\{6;8;10\}; ... A_n.... \)
a) Sa se determine multimea \( A_n \);
b) Sa se arate ca suma \( S_n \) a elementelor multimii \( A_n \), este divizibila cu 6;
c) Exista \( m, n, p \in \mathb{N}^* \) astfel incat \( S_m+S_n+S_p\leq 3mnp \) ?
moldovan ana
Pitagora
Posts: 54
Joined: Wed Sep 23, 2009 4:10 pm

Post by moldovan ana »

a) An = {n(n-1)+2x0, n(n-1)+2x1, n(n-1)+2x2,...,n(n-1)+2x(n-1)}
b) Sn = (n-1)n(n+1) = produs de trei numere consecutive care evident se divide cu 6
(in general un produs de k numere consecutive se divide cu k!)
c) exista m=n=p=a, cu a natural, deoarece avem Sn+Sm+Sp = 3a^3-3a<=3a^3 evident.
Post Reply

Return to “Clasa a VII-a”