Inegalitate polinomiala 4

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Inegalitate polinomiala 4

Post by Marius Mainea »

Daca a, b, c, d sunt numere reale cu \( a+b+c+d=0 \), atunci \( a^4+b^4+c^4+d^4+28abcd\ge 0. \)
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Indicatie:

Putem presupune fara a pierde generalitatea ca \( a,b,c\ge 0 \) si \( d\le 0 \).

Atunci \( d=-a-b-c \) si inegalitatea devine \( a^4+b^4+c^4+(a+b+c)^4-28abc(a+b+c)\ge 0 \) cu a, b, c nenegative.
Last edited by Marius Mainea on Sat Dec 05, 2009 10:14 pm, edited 1 time in total.
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Problema revine la \( \left(a^{4}+b^{4}+c^{4}-abc(a+b+c)\right)+\left(a+b+c\right)\left(\left(a+b+c\right)^{3}-27abc\right)\ge0 \), relatie adevarata tinand cont ca ambele cantitati din paranteze sunt pozitive (exercitiu).
Last edited by Claudiu Mindrila on Sat Dec 05, 2009 10:14 pm, edited 1 time in total.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Poti sa detaliezi?
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

\( \sum a^{4}\ge\sum a^{2}b^{2}\ge\sum ab\cdot bc=abc\left(\sum a\right) \) si \( a+b+c\ge3\sqrt[3]{abc}\Longrightarrow\left(a+b+c\right)^{3}\ge27abc \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Post Reply

Return to “Clasa a VIII-a”