Concursul "Nicolae Coculescu" 2009, problema 4

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Concursul "Nicolae Coculescu" 2009, problema 4

Post by Laurentiu Tucaa »

Fie \( f:\mathbb{R}\rightarrow\mathbb{R} \) o functie cu proprietatea
\( f(x^3+y^3)+f(x^3-y^3)=2x\(f^2(x)+f^2(y)\)-2yf(x)f(y) \).
Sa se arate ca daca multimea \( A=\{x\in\mathbb{R}|f(x)=0\} \) este finita, atunci \( \forall x\in\mathbb{R} \) exista \( a,b\in\mathbb{Q} \) cu \( |b-a|\le\frac{1}{2} \) astfel incat \( f(a)<x<f(b) \).

Marius Perianu
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

Etape:
-imparitate functie;
-\( f(1)=1 \);
-\( f(2x)=2f(x)\Longrightarrow f(nx)=nf(x)\forall x\in\mathbb{R}\forall n\in\mathbb{N} \);
-\( f(x)=xf(1)=x\forall x\in\mathbb{Q} \)
-cum multimea numerelor rationale e densa pe \( \mathbb{R} \) concluzia este evidenta.
Post Reply

Return to “Clasa a X-a”