Sa se arate ca sirul \( (a_{n})_{n\geq1} \) dat prin formula:
\( a_{n}=\sum_{k=1}^{n}{\frac{1}{2^{k^2}}}\forall n \in\mathbb{N}* \)
nu poate fi scris sub forma \( a_{n}=\frac{f(n)}{g(n)}\forall n \in\mathbb{N}* \), unde \( f,g\in\mathbb{R}[X] \).
***
Sir care nu poate fi fractie polinomiala
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
-
andy crisan
- Pitagora
- Posts: 56
- Joined: Sun Dec 28, 2008 5:50 pm
- Location: Pitesti
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Altfel ar rezulta ca \( a_{n+1}-a_n=\frac{1}{2^{(n+1)^2}}=\frac{f(n+1)}{g(n+1)}-\frac{f(n)}{g(n)} (\forall)n\in\mathbb{N^{\ast}} \)
Deoarece \( a_n \) este marginit(\( a_n\in (0,1) \)) si crescator rezulta ca este convergent deci f si g au acelasi grad.
Pe de alta parte ar rezulta ca \( \lim_{n\to \infty}\frac{(n+1)^2}{2^{(n+1)^2}}=0=\lim_{n\to\infty}(n+1)^2\frac{f(n+1)}{g(n+1)}-\frac{f(n)}{g(n)} \)
Deoarece \( a_n \) este marginit(\( a_n\in (0,1) \)) si crescator rezulta ca este convergent deci f si g au acelasi grad.
Pe de alta parte ar rezulta ca \( \lim_{n\to \infty}\frac{(n+1)^2}{2^{(n+1)^2}}=0=\lim_{n\to\infty}(n+1)^2\frac{f(n+1)}{g(n+1)}-\frac{f(n)}{g(n)} \)
Last edited by Marius Mainea on Fri Dec 04, 2009 10:52 am, edited 2 times in total.
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
Presupunem ca exista cele doua polinoame . Ar rezulta ca
\( a_{n+1}-a_{n}=\frac{1}{2^{(n+1)^2}}=\frac{f(n+1)}{g(n+1)}-\frac{f(n)}{g(n)}=\frac{h(n)}{g(n+1)g(n)} \)
Fie sirul \( c_n=\frac{1}{2^{(n+1)^2}} \) de unde \( \frac{c_{n+1}}{c_n}=\frac{2^{(n+1)^2}}{2^{(n+2)^2}}=\frac{1}{2^{2n+3}}=\frac{h(n+1)}{g(n+2)g(n+1)}\cdot\frac{g(n)g(n+1)}{h(n)}=\frac{h(n+1)}{h(n)}\cdot\frac{g(n)}{g(n+2)} \)
Trecand la limita obtinem \( 0=1\cdot 1=1 \) contradictie.
\( a_{n+1}-a_{n}=\frac{1}{2^{(n+1)^2}}=\frac{f(n+1)}{g(n+1)}-\frac{f(n)}{g(n)}=\frac{h(n)}{g(n+1)g(n)} \)
Fie sirul \( c_n=\frac{1}{2^{(n+1)^2}} \) de unde \( \frac{c_{n+1}}{c_n}=\frac{2^{(n+1)^2}}{2^{(n+2)^2}}=\frac{1}{2^{2n+3}}=\frac{h(n+1)}{g(n+2)g(n+1)}\cdot\frac{g(n)g(n+1)}{h(n)}=\frac{h(n+1)}{h(n)}\cdot\frac{g(n)}{g(n+2)} \)
Trecand la limita obtinem \( 0=1\cdot 1=1 \) contradictie.