Fie \( SABC \) un tetraedru echifacial (fetele sunt triunghiuri congruente). In triunghiurile \( SAB, SBC \), respectiv \( SCA \), construim bisectoarele \( AD, BE, CF \), cu \( D\in (SB), E\in (SC), F\in (SA) \), si \( DM\parallel AB, EN\parallel BC, FP\parallel CA \), unde \( M\in (SA), N\in (SB) \) si \( P\in (SC) \). Sa se arate ca:
\( 2(MD+NE+PF)\leq AB+BC+CA \).
Costel Anghel
Concursul Nicolae Coculescu editia 2009 subiectul I
Moderators: Bogdan Posa, Laurian Filip
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
Concursul Nicolae Coculescu editia 2009 subiectul I
Last edited by Andi Brojbeanu on Sat Nov 28, 2009 6:30 pm, edited 4 times in total.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)