Drepte perpendiculare in triunghiul isoscel.

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Drepte perpendiculare in triunghiul isoscel.

Post by Claudiu Mindrila »

Fie \( \triangle ABC \) cu \( AB=AC \), \( M \) mijlocul laturii \( BC \), \( MN\perp AC,\ N\in AC \) si \( P\in\left[MC\right] \) a. i. \( \frac{MP}{PC}=\frac{AM^{2}}{AC^{2} \). Demonstrati ca \( AP \perp BN \).

Magdalena Banescu
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Se arata ca AP intersecteaza pe MN in mijlocul lui [MN], sa-i zicem E.

Apoi E este ortocentrul unui triunghi.

PS. A se vedea problema 5-OJM-1987.
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Asemanator iese si problema 1, ONM 2008, clasa a VII-a.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Post Reply

Return to “Clasa a IX-a”