Inegalitatea 8, conditionata, cu abc=1

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
User avatar
Wizzy
Euclid
Posts: 25
Joined: Sat Sep 29, 2007 11:20 pm
Location: Craiova

Inegalitatea 8, conditionata, cu abc=1

Post by Wizzy »

Fie \( a,b,c \) numere reale poztive astfel incat \( abc=1 \). Sa se arate ca:

\( \frac{a+b}{2(a^7+b^7+c)}+\frac{b+c}{2(b^7+c^7+a)}+\frac{c+a}{2(c^7+a^7+b)}\leq 1 \)
Vrajitoarea Andrei
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

Alta inegalitate gen USAMO '97...

Sa observam ca \( x^7 + y^7 \ge x^5y^2 + x^2y^5 \) are loc pentru orice reale pozitive \( x, y \).
Astfel, luand in considerare \( abc = 1 \),

\( \frac{a + b}{2(a^7 + b^7 + c)} \le \frac{a^2b^2c^2(a + b)}{2(a^5b^2 + a^2b^5 + a^2b^2c^3)} = \frac{c^2(a + b)}{2(a^3 + b^3 + c^3)} \).

Insumand, membrul stang este mai mic sau egal decat

\( \sum \frac{c^2(a + b)}{2(a^3 + b^3 + c^3)} = \frac{\sum (a^2b + ab^2)}{2 \cdot \sum a^3} \le \frac{\sum (a^3 + b^3)}{2 \cdot \sum a^3} = 1 \).

Bineinteles ca egalitatea are loc daca si numai daca toate variabilele sunt egale (cu \( 1 \)).
Alta intrebare asemanatoare este Imar '05, problema 1 (Juniori!).
De asemenea, Vasc are un articol foarte interesant in legatura (vezi arhiva paginii prinicipale a MLS).
Last edited by Filip Chindea on Thu Jun 19, 2008 7:32 pm, edited 1 time in total.
Life is complex: it has real and imaginary components.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Avem \( a7+b^7\geq\frac{1}{2}(a^3+b^3)(a^4+b^4) \) conform ineglitatii Cebasev.

Mai departe \( LHS\geq(a^3+b^3)a^2b^2=\frac{a^3+b^3}{c^2} \) si analoagele.

Deci\( LHS\leq\sum \frac{a+b}{2(\frac{a^3+b^3}{c^2}+c)}=\sum \frac{c^2(a+b)}{2(a^3+b^3+c^3)}=\frac{\sum ab(a+b)}{\sum {a^3+b^3}}\leq1 \).

PS Solutia mea a fost data pe alt topic si de aceea coincide cu solutia lui Filip.
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

Bineinteles ca are legatura cu intrebarea asta.
Vezi si aici.
Last edited by Filip Chindea on Thu Jun 19, 2008 7:32 pm, edited 1 time in total.
Life is complex: it has real and imaginary components.
Post Reply

Return to “Inegalitati”