Daca \( a,b,c \) nenule si \( a^2+b^2+c^2=1 \) atunci :\( \frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}\leq \frac{3}{2}-(a-b)^2 \).
Mihai Opincariu
Inegalitate nesimetrica
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
Inegalitate nesimetrica
Last edited by opincariumihai on Sun Sep 27, 2009 11:57 pm, edited 3 times in total.
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Demonstratie. Imi place problema ! De fapt inegalitatea propusa este simetrica.opincariumihai wrote:\( \left\|\begin{array}{c}
\{a,b,c\}\subset\mathbb{R}^*\ \wedge\ a^2+b^2+c^2=1\\\\\\\\
m=\max\ \{\ |a-b|\ ,\ |b-c|\ ,\ |c-a|\ \}\end{array}\right\|\ \Longrightarrow\ \sum \frac{bc}{b^2+c^2}\leq \frac{3}{2}-m^2 \).
Se arata usor ca \( \sum |b-c|\ge 2m\ (*) \) . Deci \( \sum \frac{bc}{b^2+c^2}=\frac 12\cdot\left(\sum\frac {2bc}{b^2+c^2}-1+1\right)= \)
\( \frac 12\cdot\left(3-\sum\frac {|b-c|^2}{b^2+c^2}\right)\ \stackrel {\mathrm{C.B.S.}}{\le}\ \frac 12\cdot\left[3-\frac {\left(\sum|b-c|\right)^2}{\sum\left(b^2+c^2\right)}\right]=\frac 32-\frac 14\cdot\left(\sum |b-c|\right)^2\ \stackrel{(*)}{ \le}\ \frac 32-m^2. \)