Daca \( x_1 ,x_2 ,x_3 ..... x_n \) sunt numere pozitive atunci:
\( x_1+x_2+.....+x_n+\frac{n}{\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_n}}\ge (n+1)\sqrt[n]{x_1\cdot x_2....\cdot x_n} \)
MR , 6/2008
Inegalitate cu medii
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
Observ ca ati gasit o solutie foarte eleganta domnule Mainea ! Este vorba de solutia publicata aici , problema S 103.
Mai ramane insa de justificat (la fel de elegant) de ce are loc inegalitatea :
\( \frac{ \sum x_1...x_{n-1}}{n} \leq \( \frac{ x_1+...+x_n}{n}\)^{n-1} \)(*)
Mai ramane insa de justificat (la fel de elegant) de ce are loc inegalitatea :
\( \frac{ \sum x_1...x_{n-1}}{n} \leq \( \frac{ x_1+...+x_n}{n}\)^{n-1} \)(*)
Last edited by opincariumihai on Sun Sep 27, 2009 10:41 pm, edited 1 time in total.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD