Aratati ca in orice triunghi are loc inegalitatea :
\( \sum \frac{1}{a+b-c} \geq \frac{ \sqrt3}{2r}. \)
Mihai Opincariu, G.M.B. 10/2000
Inegalitate in triunghi din gazeta matematica
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Inegalitatea de mai sus este echivalenta dupa cateva calcule cu inegalitatea Finsler-Hadwiger, i.e.
\( a^2+b^2+c^2\geq 4S\sqrt{3}+(a-b)^2+(b-c)^2+(c-a)^2. \)
\( a^2+b^2+c^2\geq 4S\sqrt{3}+(a-b)^2+(b-c)^2+(c-a)^2. \)
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.