Ecuatie URSS 1975

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Ecuatie URSS 1975

Post by alex2008 »

Sa se rezolve ecuatia :

\( 1!+2!+3!+...+(x+1)!=y^{z+1}\ , \ x,y,z\in \mathbb{N} \)
. A snake that slithers on the ground can only dream of flying through the air.
Theodor Munteanu
Pitagora
Posts: 98
Joined: Tue May 06, 2008 5:46 pm
Location: Sighetu Marmatiei

Post by Theodor Munteanu »

Observam ca avem o infinitate de triplete (1,1,n).
Daca \( x \geq 8 \) si \( z\geq 2 \) ecuatia nu are solutii deoarece 1!+2!+...+8!=46233 care se divide doar la 9, iar celalalt membru se divide cel putin la 27 in cazul in care presupunem ca y=3k (altfel evident nu gasim solutii).
Daca luam \( x \leq 7 \) prin incercari observam ca nu are solutii.
Daca \( x \geq 8 \) si z=0 ec are o infinitate de solutii.
Daca \( x \geq 8 \) si z=1 1!+2!+3!+4!=33 deci \( y^2=M5+3 \) imposibil iar 1+2!+3!=9=\( 3^2 \) deci (2,3,1) e o alta solutie a ecuatiei.
Last edited by Theodor Munteanu on Tue Sep 22, 2009 10:43 am, edited 1 time in total.
La inceput a fost numarul. El este stapanul universului.
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

\( (3,3,1) \) nu e solutie.
. A snake that slithers on the ground can only dream of flying through the air.
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

Cred ca a vrut sa spuna (2,3,1), care este solutie.
Post Reply

Return to “Clasa a X-a”