Unghiuri congruente.

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Unghiuri congruente.

Post by Virgil Nicula »

Fie trapezul \( ABCD\ ,\ AB\parallel CD \) pentru care \( BD\perp BA \) . Notam \( I\in AC\cap BD \) ,

mijlocul \( E \) al laturii \( [AB] \) si \( F\in AC\cap DE \) .Sa se arate ca \( \widehat {IBF}\equiv\widehat {IBC} \) (own).
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Fie \( BF\cap AD=\{M\} \) si \( MI\cap BC=\{N\} \)

Din teorema lui Ceva in ABD obtinem ca \( \frac{BI}{ID}=\frac{AM}{MD} \) de unde \( MN\parallel AB \)

Intrucat \( MI=IN \) deducem ca in \( \triangle BMN \) BI este inaltime si mediana deci este si bisectoare.
Post Reply

Return to “Clasa a IX-a”