Demonstrati ca pentru orice \( a,\ b,\ c\in\left(\frac{1}{2},\ +\infty\right) \) astfel incat \( abc=1 \) are loc inegalitatea \( \frac{a^{4}}{b+c-1}+\frac{b^{4}}{c+a-1}+\frac{c^{4}}{a+b-1}\ge3. \)
Claudiu Mindrila, R. M. T. 3/2009
Inegalitate conditionata cu produsul 1(OWN)
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Inegalitate conditionata cu produsul 1(OWN)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
Re: Inegalitate conditionata cu produsul 1(OWN)
\( \frac{a^4}{b+c-1}\geq 2a^2-2b-2c+2 \) si analoagele care insumate duc la
\( \frac{a^{4}}{b+c-1}+\frac{b^{4}}{c+a-1}+\frac{c^{4}}{a+b-1}
\geq 2\sum{a^2}-4\sum{a}+6 \geq\frac{2}{3} (\sum{a}-3)^2 \).
\( \frac{a^{4}}{b+c-1}+\frac{b^{4}}{c+a-1}+\frac{c^{4}}{a+b-1}
\geq 2\sum{a^2}-4\sum{a}+6 \geq\frac{2}{3} (\sum{a}-3)^2 \).
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)