Inegalitate cu logaritmi, GM nr 10/2007

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Wizzy
Euclid
Posts: 25
Joined: Sat Sep 29, 2007 11:20 pm
Location: Craiova

Inegalitate cu logaritmi, GM nr 10/2007

Post by Wizzy »

Fie \( a,b,c\in (0,1) \) sau \( a,b,c\in (1,\infty) \). Sa se demonstreze inegalitatea:

\( \log_{(a^2b)}a+\log_{(b^2c)}b+\log_{(c^2a)}c\leq \log_{(ab^2)}a+ \log_{(bc^2)}b+ \log_{(ca^2)}c. \)
Vrajitoarea Andrei
turcas
Pitagora
Posts: 83
Joined: Fri Sep 28, 2007 1:48 pm
Location: Cluj-Napoca
Contact:

Post by turcas »

Logaritmam intr-o baza oarecare \( p \) situata in acelasi interval cu \( a,b,c \) si notam \( \log_{p}a = x \), \( \log_{p}b = y \) si \( \log_{p}c=z \), unde \( x,y,z >0 \).

Inegalitatea din enunt devine:

\( \frac{x}{2x+y} + \frac{y}{2y+z} + \frac{z}{2z+x} \leq \frac{x}{x+2y} + \frac{y}{y+2z} + \frac{z}{z+2x}. \)

Demonstram prima data ca:

\( \frac{x}{2x+y} + \frac{y}{2y+z} + \frac{z}{2z+x} \leq 1 \) \( (*) \).

Aducem la acelasi numitor si se ajunge la:

\( 3xyz \leq xy^2 + yz^2 +zx^2 \), adevarata din inegalitatea mediilor.

Pe aceeasi idee se demonstreaza ca:

\( \frac{x}{x+2y} + \frac{y}{y+2z} + \frac{z}{z+2x} \geq 1. \) \( (**) \) (Se aduce la acelasi numitor.)

Atunci din \( (*) \) si \( (**) \) avem ca \( \frac{x}{2x+y} + \frac{y}{2y+z} + \frac{z}{2z+x} \leq \frac{x}{x+2y} + \frac{y}{y+2z} + \frac{z}{z+2x} \), care este echivalenta cu inegalitatea din enunt.
Post Reply

Return to “Clasa a X-a”