Progresie aritmetica

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Progresie aritmetica

Post by Mateescu Constantin »

Sa se arate ca un sir neconstant de numere naturale nenule \( (x_n)_{n\ge 0} \) este o progresie aritmetica daca si numai daca exista \( a\ >\ 0 \) astfel incat \( x_{n+1}=x_n+\left\[\frac{x_n}{n+a}\right\],\ \forall n\in\mathbb{N} \).


ONM 1988
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Necesitatea rezulta alegand \( a\in (\frac{a_0}{r+1},\frac{a_0}{r}] \) (r - ratia progresiei).

Suficienta rezulta demonstrand prin inductie ca \( x_n=x_0+n\[\frac{x_0}{a}\] \), \( n\ge 0 \).
Post Reply

Return to “Clasa a X-a”