Determinati functiile monotone \( f : (0,\infty) \rightarrow R \) cu proprietatea ca \( f(\frac{2x}{1+x})=f(x) \) \( \forall x \in{(0,\infty)} \).
Mihai Monea
Ecuatie functionala simpla 2
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
Ecuatie functionala simpla 2
Last edited by opincariumihai on Fri Sep 11, 2009 11:07 pm, edited 2 times in total.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Pentru \( x_0y_0>1,x_0> y_0 \) definim \( x_{n+1}=\frac{2x_n}{1+x_n} \) care este strict descrescatoar si tinde la 1.
Deoarece f este monotona rezulta ca \( f(x_0)=f(y_0) \).
Analog f este constanta pe \( (0,1) \).
Asadar \( f(x)=\left{\begin{array}{cc}a&&\mbox{pentru}&&x\in(0,1)\\b&&\mbox{daca}&&x=1\\c&&\mbox{pentru}&&x\in(1,\infty)\end{array} \) cu \( a\le b\le c \) daca f este crescatoare si \( a\ge b\ge c \) daca f e descrescatoare.
Deoarece f este monotona rezulta ca \( f(x_0)=f(y_0) \).
Analog f este constanta pe \( (0,1) \).
Asadar \( f(x)=\left{\begin{array}{cc}a&&\mbox{pentru}&&x\in(0,1)\\b&&\mbox{daca}&&x=1\\c&&\mbox{pentru}&&x\in(1,\infty)\end{array} \) cu \( a\le b\le c \) daca f este crescatoare si \( a\ge b\ge c \) daca f e descrescatoare.