Limita interesanta

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
Francisc
Euclid
Posts: 12
Joined: Thu Oct 04, 2007 9:36 am
Location: Timisoara

Limita interesanta

Post by Francisc »

Sa se determine limita sirului :
\( {\lim }\limits_{n \to \infty } \frac{1}{n}\sum\limits_{k = 0}^{n - 1} {\sqrt {\ln \left( {1 + \frac{1}{{n + k}}} \right)^n + 1} } \)
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

Limita este egala cu \( \int_{0}^{1} \sqrt{\frac{1}{1+x}+1} \cdot dx \) si ca indiciu asupra metodei, se foloseste inegalitatea \( x-\frac{x^2}{2} \leq \ln(1+x) \leq x \).
A mathematician is a machine for turning coffee into theorems.
Post Reply

Return to “Analiza matematica”