O limita

Post Reply
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

O limita

Post by Marius Dragoi »

Sa se calculeze limita:

\( \lim_{n\to\infty} n^{p-pq-1} \sum_{k=0}^{n-1}{(({k+1})^q - k^q)}^p \),

unde p si q sunt doua numere naturale pozitive.

Boros Francisc
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Boros Francisc wrote: Sa se calculeze limita \( \lim_{n\to\infty} n^{p-pq-1} \sum_{k=0}^{n-1}{(({k+1})^q - k^q)}^p \) unde \( p>0 \) si \( q>0 \) (nu neaparat naturale !).
Demonstratie.

\( \lim_{n\to\infty} n^{p-pq-1}\cdot \sum_{k=0}^{n-1}\left[({k+1})^q - k^q\right]^p=\lim_{n\to\infty}\frac {\sum_{k=0}^{n-1}\left[({k+1})^q - k^q\right]^p}{n^{1+p(q-1)}}\ \stackrel{ST.}{=}\ \lim_{n\to\infty}\frac {\left[({n+1})^q - n^q\right]^p}{(n+1)^{1+p(q-1)}-n^{1+p(q-1)}}= \)

\( \lim_{n\to\infty}\left[\frac {\left(\frac {n+1}{n}\right)^q-1}{\frac {n+1}{n}-1}\right]^p\cdot\frac {n^{p(q-1)}}{(n+1)^{1+p(q-1)}-n^{1+p(q-1)}}=\frac {q^p}{p(q-1)+1}\Longrightarrow\overline{\underline{\left\|\ \lim_{n\to\infty} n^{p-pq-1}\cdot \sum_{k=0}^{n-1}\left[({k+1})^q - k^q\right]^p=\frac {q^p}{p(q-1)+1}\ \right\|}} \) .

Observatie. \( \ \frac {n^{p(q-1)}}{(n+1)^{1+p(q-1)}-n^{1+p(q-1)}}=\frac {1}{(n+1)\left(1+\frac 1n\right)^{p(q-1)}-n}=\frac {1}{n\left[\left(1+\frac 1n\right)^{p(q-1)}-1\right]+\left(1+\frac 1n\right)^{p(q-1)}}= \)

\( \frac {1}{\frac {\left(1+\frac 1n\right)^{p(q-1)}-1}{\left(1+\frac 1n\right)-1}+\left(1+\frac 1n\right)^{p(q-1)}} \) . Asadar, \( \lim_{n\to\infty}\ \frac {n^{p(q-1)}}{(n+1)^{1+p(q-1)}-n^{1+p(q-1)}}=\lim_{n\to\infty}\ \frac {1}{\frac {\left(1+\frac 1n\right)^{p(q-1)}-1}{\left(1+\frac 1n\right)-1}+\left(1+\frac 1n\right)^{p(q-1)}}=\frac {1}{p(q-1)+1} \) .

Am folosit doar limita remarcabila \( \left\|\ \begin{array}{c}
a_n\rightarrow 1\\\\
a_n\ne 1\ ,\ \left(\forall\right)\ n\in \mathbb N\end{array}\ \right\|\ \Longrightarrow\ \frac {a_n^r-1}{a_n-1}=r\ ,\ \left(\forall\right)\ r\in\mathbb R \)
.

Comentariu.

Limita este frumoasa, insa nu depaseste nivelul fazei locale O.M. Observ ca problema are autorul mentionat.
Imi poti spune Marius, te rog, daca a aparut intr-o carte/culegere sau o revista de matematica ?! Multumesc !
Last edited by Virgil Nicula on Tue Aug 25, 2009 11:15 pm, edited 7 times in total.
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

Am fost contactat de catre autor personal si am pus aceasta problema ajutand-ul pe domnul profesor din cauza faptului ca dansul nu se pricepe momentan cu limbajul \( LaTeX \).
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

Problema e la nivelul clasei a 11-a,nu inteleg de ce a fost pusa la a12-a.
Post Reply

Return to “Clasa a 11-a”