Relatie intr-un patrulater convex

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Relatie intr-un patrulater convex

Post by Mateescu Constantin »

Se considera patrulaterul convex \( ABCD \) in care \( \angle A=60^{\circ},\ \angle C=30^{\circ} \) si \( AB=AD \).
Aratati ca \( AC^2=BC^2+CD^2 \) .
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Din relatia lui Euler \( AC^2+BD^2=AB^2+BC^2+CD^2+DA^2-4EF^2 \) obtinem ce relatia din concluzie este echivalenta cu

\( EF=\frac{AB}{2} \)
Last edited by Marius Mainea on Fri Aug 14, 2009 10:12 pm, edited 2 times in total.
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Demonstratie:

Aplicam teorema lui Ptolemeu generalizata:

\( AC^{2}\cdot BD^{2}=AB^{2}\cdot CD^{2}+AD^{2}\cdot BC^{2}-2AB\cdot BC\cdot CD\cdot DA\cdot \cos(A+C) \)

\( \stackrel{A+C=90^{\circ}}{\Longleftrightarrow }AC^{2}\cdot BD^{2}=AB^{2}\cdot CD^{2}+AD^{2}\cdot BC^{2}\ \Longleftrightarrow\ AC^{2}=CD^{2}+BC^{2} \) , deoarece triunghiul \( ABD \) este echilateral.
Post Reply

Return to “Clasa a VII-a”