Ecuatie functionala simpla

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
opincariumihai
Thales
Posts: 134
Joined: Sat May 09, 2009 7:45 pm
Location: BRAD

Ecuatie functionala simpla

Post by opincariumihai »

Determinati toate functiile \( f : (0,\infty) \rightarrow (0,\infty) \) cu proprietatea : \( f(x^2f(y))=xyf(f(x)) \forall x,y\in{(0,\infty)} \)

M. Opincariu G.M.B. 2008
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Pentru \( x=1 \) obtinem \( f(f(y))=yf(f(1))\ \ (1) \) si cum \( f(x)\ >\ 0,\ \forall x\in(0,\ \infty) \) rezulta ca functia \( f \) este injectiva.

Din enunt si din relatia \( (1) \) putem scrie \( f(x^2f(y))=x^2yf(f(1)),\ \forall x,y\ >\ 0\ (2) \).

In relatia \( (2) \) luam \( x=\frac{1}{\sqrt{y}} \) si obtinem \( f\left\(\frac{f(y)}{y}\right\)=f(f(1))\ \Longrightarrow f(y)=yf(1) \).

Asadar \( f(x)=\alpha x,\ \alpha\ >\ 0 \), care verifica enuntul.
Post Reply

Return to “Clasa a IX-a”