Inegalitate in trei variabile

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
dede
Euclid
Posts: 34
Joined: Tue Oct 16, 2007 6:05 pm

Inegalitate in trei variabile

Post by dede »

Fie \( x,y,z>0 \) astfel incat \( x^3+y^3+z^3=3/2 \). Sa se arate ca \( xy+xz+yz\leq 2 \).
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

Hmm... oare unde s-a pierdut cazul de egalitate?
Din inegalitatea mediilor generalizata
\( \sum xy \le \sum x^2 = 3 \cdot \left( \left( \frac{\sum (x^3)^{\frac{2}{3}}}{3} \right)^{\frac{3}{2}} \right)^{\frac{2}{3}} \le 3 \cdot \left( \frac{\sum x^3}{3} \right)^{\frac{2}{3}} = \frac{3}{\sqrt[3]{4}} < 2 \).
Life is complex: it has real and imaginary components.
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

philandrew wrote:Hmm... oare unde s-a pierdut cazul de egal?
Asa ma gandeam si eu. :) Insa, vom demonstra ce a zis philandrew mai sus altfel
si anume:

WLOG, presupunem ca \( x\leq y\leq z \). Rezulta imediat ca
\( x^2\leq y^2\leq z^2 \) si \( x^3\leq y^3\leq z^3 \).
Prin urmare, din inegalitatea lui Cebasev, avem ca

\( (x+y+z)(x^2+y^2+z^2)\leq 3(x^3+y^3+z^3) \).

Pe de alta parte, folosind inegalitatea

\( x^3+y^3+z^3\geq \frac{1}{9}(x+y+z)^{3} \),

rezulta ca \( x+y+z\leq \frac{3}{\sqrt[3]{2}} \).

Astfel, obtinem ca

\( x^2+y^2+z^2\leq \frac{3}{\sqrt[3]{4} \).

Observatie. Inegalitatea lui dede rezulta imediat din celebra \( x^2+y^2+z^2\geq xy+yz+zx \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Post by BogdanCNFB »

Avem din \( Mg\leq Ma \) ca \( x\cdot y\cdot 1 \leq \frac{x^3+y^3+1}{3} \).
Analog pentru \( y\cdot z\cdot 1 \) si \( z\cdot x\cdot1 \).
Rezulta ca
\( xy+yz+zx\leq \frac{2x^3+2y^3+2z^3+3}{3}=\frac{2\cdot \frac{3}{2}+3}{3}=2 \)

si astfel nu s-a pierdut egalitatea!

[edit] Ti-am schimbat eu caci am observat ca iti e lene sa te uiti cum se scrie in latex.
Last edited by BogdanCNFB on Sun May 11, 2008 9:59 am, edited 1 time in total.
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Post by BogdanCNFB »

Aceasta problema este subiectul 1 de la Concursul centrelor de excelenta din Moldova, Suceava, 2 iunie 2007.

[Edit: As recomanda evitarea scrisului cu dimensiuni mari, precum si pastrarea unei atitudini on-topic si respectuoase fata de ceilalti user-i. Multumesc.]
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

Este clar ca egalitatea (cf. solutiei de mai sus) implica \( x = y = z = 1 \), absurd. Cel mai bun rezultat se afla in post-ul meu anterior, si, dupa parerea mea, orice insistenta pe acest subiect este lipsita de utilitate.
Life is complex: it has real and imaginary components.
Post Reply

Return to “Clasa a IX-a”