Aratati ca intre elementele unui triungi \( ABC \) are loc inegalitatea : \( \sum \frac{a}{AI^2} \geq \frac{p}{2r^2}. \)
Mihai Opincariu
Inegalitate in triunghi
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
Inegalitate in triunghi
Last edited by opincariumihai on Mon Jul 13, 2009 3:30 pm, edited 1 time in total.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
Re: Inegalitate in triunghi
\( \sum \frac{a}{AI^2}=\frac{p(R-r)}{r^2R}\geq \frac{p}{2r^2}. \)
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Inegalitatea este adevarata in orice triunghi, nu neaparat ascutitunghic !
Mi-ar fi placut sa o demonstrezi fara a folosi identitatea remarcabila \( \underline{\overline{\left\|\ \sum a^2(p-b)(p-c)=4p^2r(R-r)\ \right\|}} \) .
De exemplu, \( IA^2=\frac {bc(p-a)}{p} \) si celelalte \( \Longrightarrow\sum\frac {a}{IA^2}=\sum\frac {ap}{bc(p-a)}=\frac {p}{abc}\sum\frac {a^2}{p-a}=\frac {1}{4Rr}\sum\frac {a^2}{p-a} \).
Insa \( \sum\frac {a^2}{p-a}\stackrel{C.B.S.}{\ \ \ge\ \ }\frac {\left(\sum a\right)^2}{\sum (p-a)}=4p \).
Asadar \( \sum\frac {a}{IA^2}\ge \frac {p}{Rr} \), insa mai slaba decat cea propusa de tine deoarece \( \frac {p}{2r^2}\ge\frac {p}{Rr} \) . Cred ca m-ai inteles ...
O consecinta interesanta a acestei frumoase inegalitati este :
Sa se arate ca in orice triunghi \( ABC \) exista relatia \( \underline{\overline{\left\|\ \max\ \{\ \frac {a}{p-a}\ ,\ \frac {b}{p-b}\ ,\ \frac {c}{p-c}\ \}\ \ge \ \frac Rr\ \right\|}} \) .
O indicatie "tare" ar fi relatia \( \frac {a\cdot\frac {a}{p-a}+b\cdot\frac {b}{p-b}+c\cdot\frac {c}{p-c}}{a+b+c}\ \ge\ \frac {R}{r} \) care este chiar inegalitatea propusa de tine ...
Mi-ar fi placut sa o demonstrezi fara a folosi identitatea remarcabila \( \underline{\overline{\left\|\ \sum a^2(p-b)(p-c)=4p^2r(R-r)\ \right\|}} \) .
De exemplu, \( IA^2=\frac {bc(p-a)}{p} \) si celelalte \( \Longrightarrow\sum\frac {a}{IA^2}=\sum\frac {ap}{bc(p-a)}=\frac {p}{abc}\sum\frac {a^2}{p-a}=\frac {1}{4Rr}\sum\frac {a^2}{p-a} \).
Insa \( \sum\frac {a^2}{p-a}\stackrel{C.B.S.}{\ \ \ge\ \ }\frac {\left(\sum a\right)^2}{\sum (p-a)}=4p \).
Asadar \( \sum\frac {a}{IA^2}\ge \frac {p}{Rr} \), insa mai slaba decat cea propusa de tine deoarece \( \frac {p}{2r^2}\ge\frac {p}{Rr} \) . Cred ca m-ai inteles ...
O consecinta interesanta a acestei frumoase inegalitati este :
Sa se arate ca in orice triunghi \( ABC \) exista relatia \( \underline{\overline{\left\|\ \max\ \{\ \frac {a}{p-a}\ ,\ \frac {b}{p-b}\ ,\ \frac {c}{p-c}\ \}\ \ge \ \frac Rr\ \right\|}} \) .
O indicatie "tare" ar fi relatia \( \frac {a\cdot\frac {a}{p-a}+b\cdot\frac {b}{p-b}+c\cdot\frac {c}{p-c}}{a+b+c}\ \ge\ \frac {R}{r} \) care este chiar inegalitatea propusa de tine ...