\( \mbox{Sa se demonstreze ca intr-un triunghi oarecare ABC, au loc inegalitatile:} \)
a) \( \frac{a}{h_a+r_a}+\frac{b}{h_b+r_b}+\frac{c}{h_c+r_c}\ge\sqrt{3}; \)
b) \( \frac{a+b}{l_a+l_b}+\frac{a+c}{l_a+l_c}+\frac{b+c}{l_b+l_c}\ge2\sqrt{3}, \mbox{ unde }l_a, l_b, l_c \mbox{ sunt lungimile bisectoarelor.} \)
Doua inegalitati in triunghi "made in Vietnam"
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
mihai miculita
- Pitagora
- Posts: 93
- Joined: Mon Nov 12, 2007 7:51 pm
- Location: Oradea, Romania
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
mihai miculita
- Pitagora
- Posts: 93
- Joined: Mon Nov 12, 2007 7:51 pm
- Location: Oradea, Romania
a) \( \mbox{Facand substitutiile: } p-a=x, p-b=y, p-c=z, \mbox{ avem: } \)
\( a=y+z,\ S=\sqrt{xyz(x+y+z)},\ h_a=\frac{2S}{a}=\frac{2\sqrt{xyz(x+y+z)}}{y+z},\ r_a=\frac{S}{p-a}=\frac{\sqrt{xyz(x+y+z)}}{x}\Rightarrow \)
\( \Rightarrow \frac{a}{h_a+r_a}=\frac{y+z}{\(\frac{2}{y+z}+\frac{1}{x}\)\sqrt{xyz(x+y+z)}}=\frac{x(y+z)^2}{(2x+y+z)\sqrt{xyz.(x+y+z)}. \)
\( \mbox{Asa ca: }\sum{\frac{a}{h_a+r_a}\ge\sqrt{3}\Leftrightarrow \sum{\frac{x(y+z)^2}{2x+y+z}}}\ge\sqrt{3xyz(x+y+z)}\ (\forall)x,y,z>0. \)
voi reveni...
\( a=y+z,\ S=\sqrt{xyz(x+y+z)},\ h_a=\frac{2S}{a}=\frac{2\sqrt{xyz(x+y+z)}}{y+z},\ r_a=\frac{S}{p-a}=\frac{\sqrt{xyz(x+y+z)}}{x}\Rightarrow \)
\( \Rightarrow \frac{a}{h_a+r_a}=\frac{y+z}{\(\frac{2}{y+z}+\frac{1}{x}\)\sqrt{xyz(x+y+z)}}=\frac{x(y+z)^2}{(2x+y+z)\sqrt{xyz.(x+y+z)}. \)
\( \mbox{Asa ca: }\sum{\frac{a}{h_a+r_a}\ge\sqrt{3}\Leftrightarrow \sum{\frac{x(y+z)^2}{2x+y+z}}}\ge\sqrt{3xyz(x+y+z)}\ (\forall)x,y,z>0. \)
voi reveni...