Sistem in trei variabile

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Sistem in trei variabile

Post by alex2008 »

Sa se rezolve in numere reale sistemul :

\( \left\{\begin x = \frac {2y}{1 + y^{2}} \\
y = \frac {2z}{1 + z^{2}} \\
z = \frac {2x}{1 + x^{2}}\right \)
. A snake that slithers on the ground can only dream of flying through the air.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Re: Sistem in trei variabile

Post by Virgil Nicula »

Dupa cateva mici observatii, problema se reduce la \( \{x,y,z\}\subset (0,1) \) si apoi se arata "imediat" ca pe \( (0,1) \) sistemul nu are solutii ...
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Re: Sistem in trei variabile

Post by Marius Mainea »

1) x=y=z=0.

2) \( x,y,z\in \mathbb{R^{\ast}} \), atunci x,y,z au acelasi semn.

3) x,y,z>0

Din AM-GM se arata ca \( x,y,z\in (0,1) \), apoi prin inmultirea prin inmultirea celor trei relatii obtinem \( (1+x^2)(1+y^2)(1+z^2)=8 \) si de aici x=y=z=1.

4) x=y=z<0
Atunci se obtine x=y=z=-1.
Post Reply

Return to “Clasa a IX-a”