Suma de radicali

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Suma de radicali

Post by Andi Brojbeanu »

Demonstrati ca \( \sqrt{n^2+1}+\sqrt {n^2+2}+.....+\sqrt{n^2+2n}<\frac{4n^2+2n+1}{2} \),pentru orice \( n\in N* \).
Lucian Tutescu, Craiova, Recreatii Matematice 1/2008
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Se foloseste AM-GM.

\( \sqrt{n^2+k}=n\sqrt{(1+\frac{k}{n^2})\cdot1}\le n\cdot\frac{1+\frac{k}{n^2}+1}{2}=n+\frac{k}{2n} \)
Last edited by Marius Mainea on Mon Jun 29, 2009 10:15 pm, edited 1 time in total.
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Post by Andi Brojbeanu »

Demonstram ca \( \sqrt{n^2+k}<n+\frac{k}{2n} \). Ridicand la patrat, obtinem \( n^2+k<n^2+k+ \frac{k^2}{4n^2} \), adevarat.
Inlocuind in relatia diin cerinta, avem \( \sqrt{n^2+1}+\sqrt{n^2+2}+....+\sqrt{n^2+2n}<n+\frac{1}{2n}+n+\frac{2}{2n}+....+n+\frac{2n}{2n}=2n^2+\frac{\frac{2n\cdot(2n+1)}{2}}{2n}=\frac{4n^2+2n+1}{2} \), adica ceea ce trebuia demonstrat.
Post Reply

Return to “Clasa a VIII-a”