Daca \( a,b,c\ge 0 \) atunci sa se arate ca :
\(
2(a^2+1)(b^2+1)(c^2+1)\ge (a+1)(b+1)(c+1)(abc+1) \)
Inegalitate neconditionata
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
Inegalitate neconditionata
. A snake that slithers on the ground can only dream of flying through the air.
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Avem inegalitatea \( 2(x^2+1)^3\ge (x+1)^3(x^3+1), \) \( x\ge 0 \), deoarece se reduce la \( (x-1)^4(x^2+x+1)\ge 0 \)
Inmultim inegalitatile pentru a, b si c :
\( 8\prod (a^2+1)^3\ge \prod (a+1)^3 \prod (a^3+1) \)
Astfel ramane de aratat ca \( (a^3+1)(b^3+1)(c^3+1)\ge (abc+1)^3 \)
Ultima inegalitate se scrie \( (a^3b^3+b^3c^3+c^3a^3-3a^2b^2c^2)+(a^3+b^3+c^3-3abc)\ge 0 \), care rezulta usor aplicand de doua ori inegalitatea mediilor.
Egalitatea are loc pentru \( a=b=c=1 \).
Inmultim inegalitatile pentru a, b si c :
\( 8\prod (a^2+1)^3\ge \prod (a+1)^3 \prod (a^3+1) \)
Astfel ramane de aratat ca \( (a^3+1)(b^3+1)(c^3+1)\ge (abc+1)^3 \)
Ultima inegalitate se scrie \( (a^3b^3+b^3c^3+c^3a^3-3a^2b^2c^2)+(a^3+b^3+c^3-3abc)\ge 0 \), care rezulta usor aplicand de doua ori inegalitatea mediilor.
Egalitatea are loc pentru \( a=b=c=1 \).