Inegalitate in numere nenegative

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Inegalitate in numere nenegative

Post by alex2008 »

Fie \( a,b,c \) trei numere nenegative . Sa se demonstreze ca :

\( (a^2-bc)\sqrt{b+c}+(b^2-ca)\sqrt{c+a}+(c^2-ab)\sqrt{a+b}\ge 0 \)
. A snake that slithers on the ground can only dream of flying through the air.
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Notam cu \( A=\sqrt{b+c} \) si analoagele.
Astfel, inegalitatea se scrie:

\( A(a^2-bc)+B(b^2-ca)+C(c^2-ab)\ge 0 \)

Avem \( 2\sum A(a^2-bc)=\sum A[(a-b)(a+c)+(a-c)(a+b)]=\sum A(a-b)(a+c)+\sum B(b-a)(b+c)=\sum (a-b)[A(a+c)-B(b+c)]=\sum(a-b)\frac{A^2(a+c)^2-B^2(b+c)^2}{A(a+c)+B(b+c)}=\sum \frac{(a-b)^2(a+c)(b+c)}{A(a+c)+B(b+c)}\ge 0 \).
Post Reply

Return to “Clasa a IX-a”