Fie \( a,b,c\in \left[\frac{1}{\sqrt{2}},\sqrt{2}\right] \) . Sa se demonstreze ca :
\(
\sum_{cyc}\frac{3}{a+2b}\ge \sum_{cyc}\frac{2}{a+b} \)
Inegalitate intr-un interval
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
Inegalitate intr-un interval
. A snake that slithers on the ground can only dream of flying through the air.
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
Scriem inegalitatea sub forma:
\( \sum\left\(\frac{3}{a+2b}-\frac{2}{a+b}+\frac{1}{6a}-\frac{1}{6b}\right\)\ge 0 \)
\( \Longleftrightarrow \sum\frac{(a-b)^2(2b-a)}{6ab(a+2b)(a+b)}\ge 0 \)
Dar \( 2b-a\ge \frac{2}{\sqrt{2}}-\sqrt{2}=0 \) si astfel inegalitatea e demonstrata. Egalitatea are loc pentru \( a=b=c \).
\( \sum\left\(\frac{3}{a+2b}-\frac{2}{a+b}+\frac{1}{6a}-\frac{1}{6b}\right\)\ge 0 \)
\( \Longleftrightarrow \sum\frac{(a-b)^2(2b-a)}{6ab(a+2b)(a+b)}\ge 0 \)
Dar \( 2b-a\ge \frac{2}{\sqrt{2}}-\sqrt{2}=0 \) si astfel inegalitatea e demonstrata. Egalitatea are loc pentru \( a=b=c \).