Inegalitate cu laturile unui triunghi

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate cu laturile unui triunghi

Post by Claudiu Mindrila »

Sa se demonstreze ca \( \frac{a+b-2c}{c^{2}+ab}+\frac{b+c-2a}{a^{2}+bc}+\frac{a+c-2b}{b^{2}+ca}\ge0 \), stiind ca \( a,\ b,\ c \) sunt lungimile laturilor unui triunghi.

Traian Preda
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Din inegalitatea triunghiului avem \( c<a+b \). O inmultim cu \( c \)
\( \Longrightarrow c^2<ac+bc \)
\( \Longleftrightarrow c^2+ab<ab+bc+ca \) si analoagele.

\( \Longrightarrow LHS\> \sum\frac{a+b-2c}{ab+bc+ca}=0 \)

Egalitatea are loc cand triunghiul este echilateral \( (a=b=c) \).
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Inegalitatea este echivalenta cu : \( ab(a - b)(a^2 - b^2) + bc(b^2 - c^2)(b - c) + ca(c - a)(c^2 - a^2)\geq 0 \Leftrightarrow ab(a+b)(a-b)^2+bc(b+c)(b-c)^2+ca(c+a)(c-a)^2\ge 0 \) , adevarat .
. A snake that slithers on the ground can only dream of flying through the air.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Mateescu Constantin wrote:Din inegalitatea triunghiului avem \( c<a+b \). O inmultim cu \( c \)
\( \Longrightarrow c^2<ac+bc \)
\( \Longleftrightarrow c^2+ab<ab+bc+ca \) si analoagele.

\( \Longrightarrow LHS\> \sum\frac{a+b-2c}{ab+bc+ca}=0 \)

Egalitatea are loc cand triunghiul este echilateral \( (a=b=c) \).
Cred ca este gresit deoarece a+b-2c etc pot fi si negative si atunci
cand inmultesti o ineg. cu o cant. negativa se schimba sensul ineg. !

\( c^2+ab<ab+bc+ca\Longrightarrow \frac {1}{c^2+ab}>\frac {1}{ab+bc+ca}\not\Longrightarrow\frac {a+b-2c}{c^2+ab}>\frac {a+b-2c}{ab+bc+ca}\ ... \)
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Dem. Sa observam mai intai ca \( LHS=\sum\frac{a+b-2c}{c^{2}+ab}=\sum\frac{\left(a-c\right)+\left(b-c\right)}{c^{2}+ab}=\sum\left(\frac{a-c}{c^{2}+ab}+\frac{c-a}{a^{2}+bc}\right) \). Acum \( \sum\left(\frac{a-c}{c^{2}+ab}+\frac{c-a}{a^{2}+bc}\right)=\sum\frac{\left(a-c\right)\left(a^{2}+bc\right)+\left(c-a\right)\left(c^{2}+ab\right)}{\left(a^{2}+bc\right)\left(c^{2}+ab\right)}=\sum\frac{\left(a-c\right)\left(a^{2}+bc-c^{2}-ab\right)}{\left(a^{2}+bc\right)\left(c^{2}+ab\right)}=\sum\frac{\left(a-c\right)\left[\left(a-c\right)\left(a+c\right)-b\left(c-a\right)\right]}{\left(a^{2}+bc\right)\left(c^{2}+ab\right)}=\sum\frac{\left(a-c\right)^{2}\left(a+c-b\right)}{\left(a^{2}+bc\right)\left(c^{2}+ab\right)}\ge0

\)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Re: Inegalitate cu laturile unui triunghi

Post by Virgil Nicula »

Claudiu Mindrila wrote:Sa se demonstreze ca \( \sum\frac{b+c-2a}{a^{2}+bc}\ge0 \), stiind ca \( a,\ b,\ c \) sunt lungimile laturilor \( \triangle\ ABC \) .
Presupunem fara a restrange generalitatea ca \( a\le b\le c \) . In acest caz se observa ca

\( \left\|\ \begin{array}{ccccc}
b+c-2a & \ge & c+a-2b & \ge & a+b-2c\\\\\\\\
\frac {1}{a^2+bc} & \ge & \frac {1}{b^2+ca} & \ge & \frac {1}{c^2+ab}\end{array}\ \right\| \)
. Din inegalitatea Cebasev rezulta ca

\( \sum\frac{b+c-2a}{a^{2}+bc}=\sum \left[(b+c-2a)\cdot\frac {1}{a^2+bc}\right]\ge\frac 13\cdot\sum (b+c-2a)\cdot\sum\frac {1}{a^2+bc}=0 \) .
Post Reply

Return to “Clasa a VIII-a”