Problema 3, lista scurta 2009

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Problema 3, lista scurta 2009

Post by Mateescu Constantin »

Fie \( x\ ,\ y\ ,\ z\ \in\ \mathbb{C} \). Sa se determine toate numerele naturale (strict) pozitive \( n \) astfel incat

sistemul de ecuatii : \( \left{\ \begin{array}{ccc}
x&+&y&+&z & = & 3& \\\\
x^2&+&y^2&+&z^2 & = & 3 & \\\\
x^n&+&y^n&+&z^n & = & 3 & \end{array} \)
are solutia unica \( x=y=z=1 \) .
Post Reply

Return to “Clasa a X-a”