Fie \( x_1,\ x_2,\ ...,\ x_n \) numere reale strict pozitive.
Demonstrati ca: \( \frac{1}{1+x_1}+\frac{1}{1+x_1+x_2}+...+\frac{1}{1+x_1+...+x_n}<\sqrt{\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_n}. \)
Inegalitate in numere pozitive
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)