Inegalitatea 7, conditionata, cu ab+bc+ca=1

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
User avatar
heman
Euclid
Posts: 39
Joined: Fri Sep 28, 2007 7:36 pm

Inegalitatea 7, conditionata, cu ab+bc+ca=1

Post by heman »

Demonstrati inegalitatea \( \sqrt {3(ab+bc+ca)}+\sqrt{\frac {1} {a^2} +\frac {1} {b^2} +\frac {1} {c^2} +(a+b+c)^2} \le \frac {1} {abc} \),
unde \( a,b,c>0 \) si \( ab+bc+ca=1. \)
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Prin aducere la acelasi numitor se obtine: \( abc\sqrt{3}+\sqrt{[(1-abc(a+b+c)]}^2\leq1 \), apoi prin eliminarea radicalului relatia se reduce la \( \sqrt{3}\leq a+b+c \), care este adevarata folosind CBS.
Post Reply

Return to “Inegalitati”