Inegalitate conditionata

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Inegalitate conditionata

Post by alex2008 »

Fie \( x,y,z>0 \) astfel incat \( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1 \) . Sa se demonstreze ca :

\( (x-1)(y-1)(z-1)\ge 8 \)
. A snake that slithers on the ground can only dream of flying through the air.
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Din enunt obtinem: \( xy+yz+zx=xyz \)

Se cunoaste inegalitatea: \( \left\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right\)(x+y+z)\geq 9. \)

\( \Longrightarrow x+y+z\geq 9 \)

Inegalitatea de demonstrat devine: \( xyz-xy-yz-zx+x+y+z\geq 9 \)

\( \Longrightarrow x+y+z\geq 9 \), adevarat.
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Fie \( x=\frac{a+b+c}{a},\ y=\frac{a+b+c}{b},\ z=\frac{a+b+c}{c}\ \left(a,\ b,\ c>0\right) \). Atunci \( \prod\left(x-1\right)=\prod\frac{b+c}{a}=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge\frac{8\sqrt{ab\cdot bc\cdot ca}}{abc}=8 \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Post Reply

Return to “Clasa a IX-a”