Ecuatie cu solutie unica

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Ecuatie cu solutie unica

Post by Marius Mainea »

Sa se gaseasca perechile de numere reale (n,m) , m>0 pentru care ecuatia

\( \frac{x}{\sqrt{m}+\frac{x}{\sqrt{m}+\frac{x}{\sqrt{m}}}}+(1-n)\sqrt{m}=0 \)

admite o singura radacina reala. Exista perechi (n,m), \( n,m\in \mathb{R}, m>0 \) pentru care aceasta ecuatie nu admite solutii reale?

M.Popescu, ,,Gh.Titeica'' 2005
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Deoarece \( \frac{x}{\sqrt{m}+\frac{x}{m+\frac{x}{\sqrt{m}}}}=\frac{x}{\sqrt{m}+\frac{x\sqrt{m}}{m+x}}=\frac{x\left(m+x\right)}{\sqrt{m}\left(m+2x\right)} \) ecuatia devine \( \frac{x\left(m+x\right)}{\sqrt{m}\left(m+2x\right)}+\left(1-n\right)\sqrt{m}=0\Longleftrightarrow\frac{x\left(m+x\right)}{m+2x}+m\left(1-n\right)=0\Longleftrightarrow x+m-mn=\frac{x^{2}}{m+2x} \) adica \( \left(m+2x\right)\left(x+m-mn\right)=x^{2}\Longleftrightarrow x^{2}+xm\left(3-2n\right)+m^{2}-m^{2}n=0 \). Ecuatia are 2 radacini reale distincte, deoarece \( \Delta>0\Longleftrightarrow m^{2}\left(3-2n\right)^{2}>4m^{2}\left(1-n\right)\Longleftrightarrow\left(3-2n\right)^{2}>4-4n\Longleftrightarrow4n^{2}-8n+5>0\Longleftrightarrow4\left(n-1\right)^{2}+1>0 \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Ai grija de conditiile de existenta :?
Post Reply

Return to “Clasa a VIII-a”