Concursul "Ion Ciolac" problema 1

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Concursul "Ion Ciolac" problema 1

Post by BogdanCNFB »

Rezolvati in multimea numerelor intregi ecuatia:
\( x^3+y^3-3xy-3=0 \).
User avatar
Mateescu Constantin
Newton
Posts: 307
Joined: Tue Apr 21, 2009 8:17 am
Location: Pitesti

Post by Mateescu Constantin »

Notam \( x+y=s \), \( xy=p \). Astfel, ecuatia din enunt devine:

\( s(s^2-3p)=3p+3\ \Longleftrightarrow\ s^3-3ps-3p-3=0\ \Longleftrightarrow\ s^3+1-3p(s+1)=4 \)

\( \Longleftrightarrow (s+1)(s^2-s+1)-3p(s+1)=4\ \Longleftrightarrow\ (s+1)(s^2-s+1-3p)=4 \)

Ecuatia fiind in numere intregi il scriem pe 4 ca toate produsele de numere intregi si se calculeaza solutiile in fiecare caz.
Last edited by Mateescu Constantin on Sat Dec 26, 2009 3:10 pm, edited 2 times in total.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Folosim formula: \( a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca) \).
Asadar \( x^3+y^3+1^3-3xy\cdot 1=(x+y+1)(x^2+y^2+1-xy-x-y)=4 \).
Post Reply

Return to “Clasa a IX-a”